
Leveraging DTrace for runtime verification

Carl Martin Rosenberg 1 Martin Steffen 2 Volker Stolz 2,3

September 28, 2016
1Simula Research Laboratory

2Inst. for Informatikk, Universitetet i Oslo

3Inst. for Data- og Realfag, Høgskolen i Bergen
Norway

Context: Runtime Verification

System
“Buffers should never overflow”

“Every request gets an answer”

Desired properties

“Variables should never enter
 an inconsistent state”

1

Monitor

Trace extractor

System
being

analyzed

Monitor
generator

Specification
formula

ACCEPT REJECT INCONCLUSIVE

Trace

2

Overview

• Goal: Evaluate DTrace’s suitability for RV.
• Contribution: graphviz2dtrace, a monitor synthesis tool.
• We evaluate the tool on two case studies.

3

DTrace

• DTrace is a system-wide instrumentation framework.
• Originally written for the Sun Solaris 10 operating system, now
available for for Mac OS X, FreeBSD and other
systems [Gregg and Mauro, 2011].

4

DTrace’s two most compelling features

1. DTrace provides facilities for dynamic tracing.
2. DTrace gives a unified view of the whole system.

5

DTrace Architecture

From Solaris Dynamic Tracing Guide, page 28 6

Static and Dynamic Instrumentation

• DTrace allows for both static and dynamic instrumentation.
• Dynamic providers: pid and fbt.
• All other providers rely on static instrumentation artefacts.

7

Static and Dynamic Instrumentation

• Developers can add their own instrumentation points.
• Many prominent projects have static instrumentation points:
PostgreSQL, Node.js, Apache, CPython etc.

8

Using DTrace: The D scripting language

• Users interact with DTrace via D, a DSL.
• Users specify actions that DTrace should take when an event of
interest occurs.

9

Using DTrace: The D scripting language

#!/usr/sbin/dtrace -qs
syscall::read:entry /* probe */
/execname != "dtrace" / /* predicate */
{

printf("%s\n", execname);
} /* action block */

10

D has all the right building blocks for encoding
Finite State Automata.

10

Design and Implementation of
graphviz2dtrace

Basic idea 1: Associate atomic propositions in
LTL specifications with DTrace probes.

10

push → pid$target::push:entry
pop → pid$target::pop:return

empty → pid$target::empty:return/arg1 == 1/

11

Basic idea 2: Use standard techniques to
create automata from specification formulas,

and encode automata in D.

11

graphviz2dtrace

Mapping

D script

12

Specification formalism: LTL3

• LTL3[Bauer et al., 2006] gives a reasonable way of dealing with
finite traces.

• LTL3 is a three-valued variety of Linear Temporal Logic (LTL):
Same syntax, different semantics.

• Key idea of LTL3: Identify good and bad
prefixes [Kupferman and Vardi, 2001].

13

Good prefix

• A trace fragment u is a good prefix with respect to some
property ϕ if ϕ holds in all possible futures following u.

14

Bad prefix

• A trace fragment u is a bad prefix with respect to some property
ϕ if ϕ holds in no possible futures following u.

15

LTL3 Semantics summarized

We can thus state the truth-value of an LTL3 formula ϕ with respect
to a finite trace u as follows:

u|=3ϕ =


⊤ if u is a good prefix wrt. ϕ
⊥ if u is a bad prefix wrt. ϕ
? otherwise.

16

Creating automata: LamaConv

• Bauer et al. give an algorithm for creating
LTL3-monitors [Bauer et al., 2011, 14:10-14:13]

• This algorithm is implemented in LamaConv1, which we make
use of.

1http://www.isp.uni-luebeck.de/lamaconv

17

http://www.isp.uni-luebeck.de/lamaconv

18

graphviz2dtrace

• In essence, graphviz2dtrace is compiles from LTL3-based
automata to D scripts.

• The automaton’s transition function is encoded in an array, and
the state is stored in a variable.

• When an event occurs, the state of the automaton is updated
according to the transition function.

19

Anticipation

• graphviz2dtrace creates anticipatory monitors that
terminate immediately upon finding a good or bad prefix.

• The scripts achieve this by understanding which state it is about
to enter.

20

Anticipation

pid$target::empty:return
/ (arg1 == 1) && (state == 1)/
{

trace("REJECTED");
HAS_VERDICT = 1;
exit(0);

}

21

Monitor

Trace extractor

System
being

analyzed

Monitor
generator

Specification
formula

ACCEPT REJECT INCONCLUSIVE

Trace

22

ACCEPT REJECT INCONCLUSIVE

Specification formula in LTL3

graphviz2dtrace

Mapping

D script

Dtrace

System being analyzed

23

Evaluation

Case Studies

1. We dynamically instrument a faulty stack implementation
written in C.

2. We investigate a Node.js web server interacting with a
PostgreSQL database.

24

104 105 106 107 108

10−2

10−1

100

101

102

0.003

0.067

0.602
0.353 0.414

1.096

8.011

72.363

0.003

0.057

0.398

3.176

30.718

Iterations

Ru
nn

in
g
tim

e
in

se
co

nd
s

Monitor overhead in Case 12

Uninstrumented
with pid

with printf

2Averaged, measured with time, largest of real or user+sys

25

Case 2

26

Case 2

We want the following properties to hold:

1. The server should never send a response before the
corresponding database query is complete.

2. There should never be an HTTP request for which the
corresponding database query and HTTP response never
happen.

27

Hack: Use counters to keep track of queries

27

Case 2

The server should never send a response before the corresponding
database query is complete:

Approximation: Number of sent responses should never exceed
number of queries:

2¬(nresponses > nqueries)

28

Case 2

There should never be an HTTP request for which the corresponding
database query and HTTP response never happen:

Approximation: There should never be more than 100 pending
requests:

2¬(((nrequests− nresponses) > 100) ∧ ((nrequests− nqueries) > 100))

29

Case 2: Results

1. Monitor with counters detect violations of both properties.
2. Screencast: https://vimeo.com/169585739

30

https://vimeo.com/169585739

Case 2: Performance Evaluation

0 20 40 60 80 100
1,200

1,400

1,600

1,800

2,000

N concurrent connections

M
ea

n
pr
oc

es
se

d
re
qu

es
ts

Mean processed requests per second at various concurrency levels3

Monitored
Unmonitored

3Averaged, measured with ab
31

Gregg’s dictum

Brendan Gregg [Straughan, 2012]

• ‘‘Don’t worry too much about pid provider probe cost at < 1000
events/sec.’’

• ‘‘At > 10,000 events/sec, pid provider probe cost will be
noticeable.’’

• ‘‘At > 100,000 events/sec, pid provider probe cost may be
painful.’’ [Gregg, 2011]

32

Future Work

• Separate trace-generation from verification: Collect data with
DTrace, evaluate with external process.

• Investigate mapping predicates rather than probes.
• Steering systems can be created by using the system function.

33

Concluding remarks

• Monitoring overhead is negligible when probe firings are below
10 000 per second.

• graphviz2dtrace enables cross-process monitoring.
• graphviz2dtrace-generated scripts are susceptible to race
conditions if probe firings may overlap.

34

References I

Bauer, A., Leucker, M., and Schallhart, C. (2006).
FSTTCS 2006: Foundations of Software Technology and
Theoretical Computer Science: 26th International Conference,
Kolkata, India, December 13-15, 2006. Proceedings, chapter
Monitoring of Real-Time Properties, pages 260–272.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Bauer, A., Leucker, M., and Schallhart, C. (2011).
Runtime verification for ltl and tltl.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64.

Gregg, B. (2011).
DTrace pid Provider Overhead.
http://dtrace.org/blogs/brendan/2011/02/18/
dtrace-pid-provider-overhead/.

http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/

References II

Gregg, B. and Mauro, J. (2011).
DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD.
Prentice Hall Professional.
Kupferman, O. and Vardi, M. Y. (2001).
Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314.

Straughan, D. (2012).
Brendan Gregg speaking at ZFS Day, Oct 2, 2012, San Francisco.
(Own work) [CC BY-SA 3.0], via Wikimedia Commons.

	Context: Runtime Verification
	DTrace
	Design and Implementation of graphviz2dtrace
	Specification formalism: LTL3
	Evaluation
	Appendix

