Leveraging DTrace for runtime verification

Carl Martin Rosenberg ' Martin Steffen? Volker Stolz %°
September 28, 2016

'Simula Research Laboratory

%Inst. for Informatikk, Universitetet i Oslo

3Inst. for Data- og Realfag, Hggskolen i Bergen
Norway

Context: Runtime Verification

System

Desired properties

“Every request gets an answer”

“Buffers should never overflow”

“Variables should never enter
an inconsistent state”

System . .
V . Specification
being

formula
analyzed
Y
Monitor
Trace extractor
generator
\
Trace

ACCEPT REJECT INCONCLUSIVE

Overview

- Goal: Evaluate DTrace’s suitability for RV.
- Contribution: graphviz2dtrace, a monitor synthesis tool.

- We evaluate the tool on two case studies.

DTrace

- DTrace is a system-wide instrumentation framework.

- Originally written for the Sun Solaris 10 operating system, now
available for for Mac OS X, FreeBSD and other

systems [Gregg and Mauro, 2011].

DTrace’s two most compelling features

1. DTrace provides facilities for dynamic tracing.

2. DTrace gives a unified view of the whole system.

DTrace Architecture

D program

o

J.ntrstat M)) Cplockstat(lM))

(dtrace (1M)) Clockstat(lM)) e

DTrace
consumers
libdtrace (3LIB)
userland
dtrace(7D) f — — — — — — — — — — -
kernel

DTrace

DTrace
providers

) (o = 4

(‘sysca11) ((profite) (me) (s

From Solaris Dynamic Tracing Guide, page 28

Static and Dynamic Instrumentation

- DTrace allows for both static and dynamic instrumentation.
- Dynamic providers: pid and fbt.
- All other providers rely on static instrumentation artefacts.

Static and Dynamic Instrumentation

- Developers can add their own instrumentation points.

- Many prominent projects have static instrumentation points:
PostgreSQL, Node.js, Apache, CPython etc.

Using DTrace: The D scripting language

- Users interact with DTrace via D, a DSL.

- Users specify actions that DTrace should take when an event of
interest occurs.

Using DTrace: The D scripting language

syscall::read:entry
/execname != "dtrace" /
{

printf("%s\n", execname);

}

D has all the right building blocks for encoding
Finite State Automata.

Design and Implementation of
graphviz2dtrace

Basic idea 1: Associate atomic propositions in
LTL specifications with DTrace probes.

push — pid$target::push:entry
pop — pid$target::pop:return
empty — pid$target::empty:return/argl == 1/

1

Basic idea 2: Use standard techniques to
create automata from specification formulas,
and encode automata in D.

Mapping

graphviz2dtrace

D script

Specification formalism: LTL;

- LTLs[Bauer et al., 2006] gives a reasonable way of dealing with
finite traces.

- LTLs is a three-valued variety of Linear Temporal Logic (LTL):
Same syntax, different semantics.

- Key idea of LTLs: Identify good and bad
prefixes [Kupferman and Vardi, 2001].

Good prefix

- Atrace fragment u is a good prefix with respect to some
property ¢ if ¢ holds in all possible futures following u.

14

- Atrace fragment u is a bad prefix with respect to some property
¢ if ¢ holds in no possible futures following u.

LTL; Semantics summarized

We can thus state the truth-value of an LTL; formula ¢ with respect
to a finite trace u as follows:

T ifuisagood prefix wrt. ¢
UEs¢ =< L ifuisabad prefix wrt. ¢
? otherwise.

16

Creating automata: LamaConv

- Bauer et al. give an algorithm for creating
LTLs-monitors [Bauer et al., 2011, 14:10-14:13]

- This algorithm is implemented in LamaConv', which we make
use of.

"Thttp://www.isp.uni-luebeck.de/lamaconv

http://www.isp.uni-luebeck.de/lamaconv

O((push A Cempty) — (—empty U pop))---+»

graphviz2dtrace

- In essence, graphviz2dtrace is compiles from LTL3-based
automata to D scripts.

- The automaton’s transition function is encoded in an array, and
the state is stored in a variable.

- When an event occurs, the state of the automaton is updated
according to the transition function.

19

Anticipation

- graphviz2dtrace creates anticipatory monitors that
terminate immediately upon finding a good or bad prefix.

- The scripts achieve this by understanding which state it is about
to enter.

20

Anticipation

pid$target::empty:return
/ (argl == 1) &§& (state == 1)/
{
trace("REJECTED");
HAS VERDICT = 1;
exit(0);

21

System . .
V . Specification
being

formula
analyzed
Y
Monitor
Trace extractor
generator
\
Trace

ACCEPT REJECT INCONCLUSIVE

O((push A Gempty) — (—empty U pop))

Specification formula in LTL3

Mapping

graphviz2dtrace

System being analyzed

D script

Dtrace

ACCEPT

/
/

REJECT INCONCLUSIVE

23

Evaluation

Case Studies

1. We dynamically instrument a faulty stack implementation
written in C.

2. We investigate a Node.js web server interacting with a
PostgreSQL database.

24

Monitor overhead in Case 12

102;\\\\\\ T T T TTTT T T T T T T T T \\\7\2\.\363\;

£ 718
n L i
= 1 |
s ¢
[<D] .]
(%] - -
= o 0.602-
o 9 Fp3s3 e
E g 1
o —1 |
< i — Uninstrumented
2 10-2L —— with pid

10.0) — with printf

7\\\\\\ Lol Lol Lol Lol \‘]

10 10° 10° 107 108
Iterations

2Averaged, measured with time, largest of real or user+sys

25

We want the following properties to hold:

1. The server should never send a response before the
corresponding database query is complete.
2. There should never be an HTTP request for which the

corresponding database query and HTTP response never
happen.

27

Hack: Use counters to keep track of queries

The server should never send a response before the corresponding
database query is complete:

Approximation: Number of sent responses should never exceed
number of queries:

O-(nresponses > nqueries)

28

There should never be an HTTP request for which the corresponding
database query and HTTP response never happen:

Approximation: There should never be more than 100 pending
requests:

O-(((nrequests — nresponses) > 100) A ((nrequests — nqueries) > 100))

29

Case 2: Results

1. Monitor with counters detect violations of both properties.
2. Screencast: https://vimeo.com/169585739

30

https://vimeo.com/169585739

Case 2: Performance Evaluation

Mean processed requests per second at various concurrency levels?

T T T T T T
2,000 |- 2 |
&
[%2]
(@)
)
g 1.800 |- .
o
b
$ 1,600 |- .
o
([@X
§ 1,400 |- —e— Monitored
= —=— Unmonitored
1,200
’ | | | | ﬁ

|
20 40 60 80 100

N concurrent connections
3Averaged, measured with ab

o

Gregg's dictum

Brendan Gregg [Straughan, 2012]

- “Don’t worry too much about pid provider probe cost at <1000
events/sec.”

- “At > 10,000 events/sec, pid provider probe cost will be
noticeable.”

- “At > 100,000 events/sec, pid provider probe cost may be
painful” [Gregg, 2011]

32

Future Work

- Separate trace-generation from verification: Collect data with
DTrace, evaluate with external process.

- Investigate mapping predicates rather than probes.

- Steering systems can be created by using the system function.

33

Concluding remarks

- Monitoring overhead is negligible when probe firings are below
10 000 per second.

- graphviz2dtrace enables cross-process monitoring.

- graphviz2dtrace-generated scripts are susceptible to race
conditions if probe firings may overlap.

34

References |

[3 Bauer, A, Leucker, M, and Schallhart, C. (2006).
FSTTCS 2006: Foundations of Software Technology and
Theoretical Computer Science: 26th International Conference,
Kolkata, India, December 13-15, 2006. Proceedings, chapter
Monitoring of Real-Time Properties, pages 260-272.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[Bauer, A, Leucker, M., and Schallhart, C. (2011).
Runtime verification for ltl and tltl.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1-14:64.
[@ Gregg, B. (2011).
DTrace pid Provider Overhead.

http://dtrace.org/blogs/brendan/2011/02/18/
dtrace-pid-provider-overhead/

http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/

References Il

W Gregg, B.and Mauro, J. (2011).
DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD.
Prentice Hall Professional.
[@ Kupferman, O. and Vardi, M. Y. (2001).
Model checking of safety properties.
Formal Methods in System Design, 19(3):291-314.

8 Straughan, D. (2012).
Brendan Gregg speaking at ZFS Day, Oct 2, 2012, San Francisco.
(Own work) [CC BY-SA 3.0], via Wikimedia Commons.

	Context: Runtime Verification
	DTrace
	Design and Implementation of graphviz2dtrace
	Specification formalism: LTL3
	Evaluation
	Appendix

