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Context: Runtime Verification



System
“Buffers should never overflow”

“Every request gets an answer”

Desired properties

“Variables should never enter
 an inconsistent state”
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Overview

• Goal: Evaluate DTrace’s suitability for RV.
• Contribution: graphviz2dtrace, a monitor synthesis tool.
• We evaluate the tool on two case studies.
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DTrace



• DTrace is a system-wide instrumentation framework.
• Originally written for the Sun Solaris 10 operating system, now
available for for Mac OS X, FreeBSD and other
systems [Gregg and Mauro, 2011].
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DTrace’s two most compelling features

1. DTrace provides facilities for dynamic tracing.
2. DTrace gives a unified view of the whole system.
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DTrace Architecture

From Solaris Dynamic Tracing Guide, page 28 6



Static and Dynamic Instrumentation

• DTrace allows for both static and dynamic instrumentation.
• Dynamic providers: pid and fbt.
• All other providers rely on static instrumentation artefacts.
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Static and Dynamic Instrumentation

• Developers can add their own instrumentation points.
• Many prominent projects have static instrumentation points:
PostgreSQL, Node.js, Apache, CPython etc.
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Using DTrace: The D scripting language

• Users interact with DTrace via D, a DSL.
• Users specify actions that DTrace should take when an event of
interest occurs.
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Using DTrace: The D scripting language

#!/usr/sbin/dtrace -qs
syscall::read:entry /* probe */
/execname != "dtrace" / /* predicate */
{

printf("%s\n", execname);
} /* action block */
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D has all the right building blocks for encoding
Finite State Automata.
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Design and Implementation of
graphviz2dtrace



Basic idea 1: Associate atomic propositions in
LTL specifications with DTrace probes.
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push → pid$target::push:entry
pop → pid$target::pop:return

empty → pid$target::empty:return/arg1 == 1/
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Basic idea 2: Use standard techniques to
create automata from specification formulas,

and encode automata in D.
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graphviz2dtrace

Mapping

D script
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Specification formalism: LTL3



• LTL3[Bauer et al., 2006] gives a reasonable way of dealing with
finite traces.

• LTL3 is a three-valued variety of Linear Temporal Logic (LTL):
Same syntax, different semantics.

• Key idea of LTL3: Identify good and bad
prefixes [Kupferman and Vardi, 2001].
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Good prefix

• A trace fragment u is a good prefix with respect to some
property ϕ if ϕ holds in all possible futures following u.
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Bad prefix

• A trace fragment u is a bad prefix with respect to some property
ϕ if ϕ holds in no possible futures following u.
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LTL3 Semantics summarized

We can thus state the truth-value of an LTL3 formula ϕ with respect
to a finite trace u as follows:

u|=3ϕ =


⊤ if u is a good prefix wrt. ϕ
⊥ if u is a bad prefix wrt. ϕ
? otherwise.
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Creating automata: LamaConv

• Bauer et al. give an algorithm for creating
LTL3-monitors [Bauer et al., 2011, 14:10-14:13]

• This algorithm is implemented in LamaConv1, which we make
use of.

1http://www.isp.uni-luebeck.de/lamaconv
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graphviz2dtrace

• In essence, graphviz2dtrace is compiles from LTL3-based
automata to D scripts.

• The automaton’s transition function is encoded in an array, and
the state is stored in a variable.

• When an event occurs, the state of the automaton is updated
according to the transition function.
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Anticipation

• graphviz2dtrace creates anticipatory monitors that
terminate immediately upon finding a good or bad prefix.

• The scripts achieve this by understanding which state it is about
to enter.
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Anticipation

pid$target::empty:return
/ (arg1 == 1) && (state == 1)/
{

trace("REJECTED");
HAS_VERDICT = 1;
exit(0);

}
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ACCEPT REJECT INCONCLUSIVE

Specification formula in LTL3

graphviz2dtrace

Mapping

D script

Dtrace

System being analyzed
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Evaluation



Case Studies

1. We dynamically instrument a faulty stack implementation
written in C.

2. We investigate a Node.js web server interacting with a
PostgreSQL database.
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Case 2
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Case 2

We want the following properties to hold:

1. The server should never send a response before the
corresponding database query is complete.

2. There should never be an HTTP request for which the
corresponding database query and HTTP response never
happen.
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Hack: Use counters to keep track of queries
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Case 2

The server should never send a response before the corresponding
database query is complete:

Approximation: Number of sent responses should never exceed
number of queries:

2¬(nresponses > nqueries)
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Case 2

There should never be an HTTP request for which the corresponding
database query and HTTP response never happen:

Approximation: There should never be more than 100 pending
requests:

2¬(((nrequests− nresponses) > 100) ∧ ((nrequests− nqueries) > 100))
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Case 2: Results

1. Monitor with counters detect violations of both properties.
2. Screencast: https://vimeo.com/169585739
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Case 2: Performance Evaluation
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Gregg’s dictum

Brendan Gregg [Straughan, 2012]

• ‘‘Don’t worry too much about pid provider probe cost at < 1000
events/sec.’’

• ‘‘At > 10,000 events/sec, pid provider probe cost will be
noticeable.’’

• ‘‘At > 100,000 events/sec, pid provider probe cost may be
painful.’’ [Gregg, 2011]
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Future Work

• Separate trace-generation from verification: Collect data with
DTrace, evaluate with external process.

• Investigate mapping predicates rather than probes.
• Steering systems can be created by using the system function.
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Concluding remarks

• Monitoring overhead is negligible when probe firings are below
10 000 per second.

• graphviz2dtrace enables cross-process monitoring.
• graphviz2dtrace-generated scripts are susceptible to race
conditions if probe firings may overlap.
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